## QUIZ 26: LESSON 33 <br> APRIL 17, 2019

Write legibly, clearly indicate the question you are answering, and put a box or circle around your final answer. If you do not clearly indicate the question numbers, I will take off points. Write as much work as you need to demonstrate to me that you understand the concepts involved. If you have any questions, raise your hand and I will come over to you.

1. [5 pts] Find the inverse of the matrix

$$
A=\left[\begin{array}{ccc}
2 & 3 & -2 \\
1 & 2 & -1 \\
-2 & -1 & 1
\end{array}\right]
$$

Solution: Write

$$
\begin{array}{cc}
{[A \mid I]=\left[\begin{array}{ccc|ccc}
2 & 3 & -2 & 1 & 0 & 0 \\
1 & 2 & -1 & 0 & 1 & 0 \\
-2 & -1 & 1 & 0 & 0 & 1
\end{array}\right]} & \xrightarrow{R_{1}+R_{3} \rightarrow R_{3}}\left[\begin{array}{ccc|ccc}
2 & 3 & -2 & 1 & 0 & 0 \\
1 & 2 & -1 & 0 & 1 & 0 \\
0 & 2 & -1 & 1 & 0 & 1
\end{array}\right] \\
-R_{2} \xrightarrow{R_{2}+R_{1} \rightarrow R_{1}}\left[\begin{array}{ccc|ccc}
1 & 1 & -1 & 1 & -1 & 0 \\
1 & 2 & -1 & 0 & 1 & 0 \\
0 & 2 & -1 & 1 & 0 & 1
\end{array}\right] & \xrightarrow{-R_{1}+R_{2} \rightarrow R_{2}}\left[\begin{array}{ccc|ccc}
1 & 1 & -1 & 1 & -1 & 0 \\
0 & 1 & 0 & -1 & 2 & 0 \\
0 & 2 & -1 & 1 & 0 & 1
\end{array}\right] \\
\underset{-2 R_{2}+R_{3} \rightarrow R_{3}}{ }\left[\begin{array}{ccc|ccc}
1 & 1 & -1 & 1 & -1 & 0 \\
0 & 1 & 0 & -1 & 2 & 0 \\
0 & 0 & -1 & 3 & -4 & 1
\end{array}\right] & \xrightarrow{-R_{3} \rightarrow R_{3}}\left[\begin{array}{ccc|ccc}
1 & 1 & -1 & 1 & -1 & 0 \\
0 & 1 & 0 & -1 & 2 & 0 \\
0 & 0 & 1 & -3 & 4 & -1
\end{array}\right] \\
\xrightarrow{R_{3}+R_{1} \rightarrow R_{1}}\left[\begin{array}{ccc|ccc}
1 & 1 & 0 & -2 & 3 & -1 \\
0 & 1 & 0 & -1 & 2 & 0 \\
0 & 0 & 1 & -3 & 4 & -1
\end{array}\right] & \xrightarrow{-R_{2}+R_{3} \rightarrow R_{1}}\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & -1 & 1 & -1 \\
0 & 1 & 0 & -1 & 2 & 0 \\
0 & 0 & 1 & -3 & 4 & -1
\end{array}\right]
\end{array}
$$

Hence,

$$
A^{-1}=\left[\begin{array}{ccc}
-1 & 1 & -1 \\
-1 & 2 & 0 \\
-3 & 4 & -1
\end{array}\right]
$$

2. [ 5 pts$]$ Solve the following system of equations:

$$
\left\{\begin{aligned}
2 x+3 y-2 z & =-4 \\
x+2 y-z & =-3 \\
-2 x-y+z & =-1
\end{aligned}\right.
$$

HINT: Use the inverse matrix that you found for \# 1 .
Solution: Let

$$
A=\left[\begin{array}{ccc}
2 & 3 & -2 \\
1 & 2 & -1 \\
-2 & -1 & 1
\end{array}\right], \quad X=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right], \quad Y=\left[\begin{array}{c}
-4 \\
-3 \\
-1
\end{array}\right]
$$

Then this system of equations is given by

$$
A X=Y
$$

$$
\left[\begin{array}{ccc}
2 & 3 & -2 \\
1 & 2 & -1 \\
-2 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
-4 \\
-3 \\
-1
\end{array}\right]
$$

Thus, $X=A^{-1} Y$ which implies

$$
\begin{aligned}
X=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] & =\left[\begin{array}{llc}
-1 & 1 & -1 \\
-1 & 2 & 0 \\
-3 & 4 & -1
\end{array}\right]\left[\begin{array}{l}
-4 \\
-3 \\
-1
\end{array}\right] \\
& =\left[\begin{array}{c}
-1(-4)+1(-3)+(-1)(-1) \\
-1(-4)+2(-3)+0(-1) \\
-3(-4)+4(-3)+(-1)(-1)
\end{array}\right] \\
& =\left[\begin{array}{c}
4-3+1 \\
4-6+0 \\
12-12+1
\end{array}\right] \\
& =\left[\begin{array}{c}
2 \\
-2 \\
1
\end{array}\right]
\end{aligned}
$$

